

An Elm Primer for React Developers
The Best Way to Learn Real Functional Programming

Christian Ekrem

This book is available at https://leanpub.com/elm-for-react-devs

This version was published on 2025-10-20

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2025 Christian Ekrem

https://leanpub.com/elm-for-react-devs
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Contents

Introduction . i

About the Author . iv

Part I: From React to Elm: Getting Started 1

Chapter 1: Elm: Delightful Constraints . 2
React Recommends, Elm Requires and Enables . 2
When Constraints Give Freedom . 3
The Debugging Clarity . 4
Refactoring with Confidence . 4
The Architectural Discipline . 5
What This Costs You . 5
What Elm Teaches You . 6

Chapter 2: The Elm Architecture vs React Patterns . 8
A Tale of Two Hangman Games . 8
The React Version: Hooks and Effects . 9
The Elm Version: Model, Msg, Update, View . 12
Breaking Down The Elm Architecture . 18
What Did We Gain? . 21
No useEffect Needed . 22
Union Types vs String Literals . 23
The Price of Simplicity . 23
What This Means for Real Applications . 24
The Three Functions That Replace All Hooks . 24
What’s Next . 25
The FP Concepts You Just Learned . 25
Try It Yourself . 26

Chapter 3: Your First Elm App . 27
Installing Elm . 27
Editor Setup . 28
Setting Up Your Project . 28

CONTENTS

The obligatory “Hello, world!” . 30
Two Flavors of main . 30
The LGTM Generator: Building It Step by Step . 33
Building Your First Elm App . 41
Compiler-Driven Development in Action . 41
What You Just Built . 43

Chapter 4: Starting Small: Elm in Your React Codebase . 44
Widget-by-widget Incremental Adoption Strategy . 44
Integrating One Elm Component into React . 44
Build Systems and Toolchain Integration . 44
Building Confidence to Go Bigger . 45

Chapter 5: State Management: From Hooks to The Elm Architecture 46
useState, useReducer, and Context → Model and Update . 46
Handling Complex State Transitions . 46
Why Immutability Isn’t Just a Nice-to-Have . 46

Chapter 6: Side Effects: From useEffect to Commands . 47
The useEffect Dependency Array Problem . 47
How Elm Sequences Effects with Cmd . 47
Testing Side Effects Without Mocking Everything . 47

Chapter 7: Type Safety: Beyond TypeScript . 48
What Compile-Time Guarantees Actually Guarantee . 48
Union Types for Modeling Impossible States . 48
Making Runtime Errors Nearly Impossible . 48

Chapter 8: Event Handling and User Interaction . 49
onClick, onChange, and Synthetic Events → Elm Messages . 49
Form Validation Patterns That Actually Work . 49
Debouncing and Complex Interaction Patterns . 49

Chapter 9: Component Architecture in Elm . 50
Moving Beyond the Single-File Approach . 50
Module Boundaries and Message Routing . 50
Composing Complex UIs Without Prop Drilling . 50

Chapter 10: HTTP and External Data . 51
fetch() and axios → Http.request . 51
Handling Loading States and Errors Elegantly . 51
JSON Decoding That Fails at Compile Time, Not Runtime . 51

Chapter 11: JavaScript Interop: Ports and Flags . 52
When You Need to Escape Elm’s Boundaries . 52

CONTENTS

Integrating with Existing JavaScript Libraries . 52
Communicating with the Outside World Safely . 52

Chapter 12: Routing and Navigation . 53
React Router → elm/browser Navigation . 53
URL Parsing and Generation . 53
SPAs That Work with the Back Button . 53

Chapter 13: Testing Strategies . 54
Jest and React Testing Library → elm-test . 54
Testing Pure Functions vs Testing Components . 54
Fuzz Testing for Catching Edge Cases . 54

Chapter 14: The Elm Ecosystem for React Developers . 55
Package Management Without Semver Hell . 55
Popular Packages and Community Patterns . 55
When the Ecosystem Doesn’t Have What You Need . 55

Chapter 15: Rendering Optimization . 56
React.memo, useCallback, and Reconciliation Pain Points . 56
How Elm’s Virtual DOM Makes Optimization Automatic . 56
Performance by Default vs Performance by Configuration . 56

Chapter 16: Performance and Bundle Size . 57
Bundle Sizes and Compilation Targets . 57
Lazy Loading and Code Splitting . 57
When and How to Optimize Elm Applications . 57

Chapter 17: Case Study: Rebuilding a React Component in Elm 58
Step-by-Step Conversion of a Real-World Form Component 58
Measuring Development Time and Bug Rates . 58
What the Refactor Revealed About Both Approaches . 58

Chapter 18: Elm at Scale . 59
Large Codebases: NoRedInk, Lamdera, Lovdata, and Others 59
Folder Structure and Code Organization . 59
Long-Term Maintenance and Team Collaboration . 59

Chapter 19: When to Choose Elm (And When Not To) . 60
Project Types Where Elm Shines . 60
Team Dynamics and Learning Curves . 60
Making the Business Case for Functional Frontend Development 60
The Value Even If You Don’t Use Elm Professionally . 60

Appendix A: Quick Reference Guide . 61

React → Elm Concept Mapping . 61
Common Patterns Cheat Sheet . 61
Troubleshooting Guide for React Developers . 61

Appendix C: Further Reading and Resources . 62
Essential Elm Learning Resources . 62
Richard Feldman’s SPA Example (The Gold Standard Elm Codebase) 62
Community and Getting Help . 62
Advanced Topics Beyond This Book . 62

Introduction
If you’re a React developer, chances are you’ve felt the framework’s power and complexity.
Hooks are incredibly flexible, TypeScript catches many errors—yet runtime surprises still slip
through. useEffect dependencies that never feel quite right. Performance bugs requiring strategic
React.memo and useCallback. These aren’t signs you’re doing React wrong; they’re the inherent
trade-offs of React’s flexibility.

Some of my most-read posts are the deep-dive React articles—especially on React.memo and recon-
ciliation. A few are used in React courses and have even been translated to Korean. This popularity
reflects a truth: once you step beyond the basics, React’s complexity increases dramatically and the
good can quickly become challenging faster than you expect.

Elm takes a very different approach. It’s not just another UI library; it’s a language with a single
way of building applications, designed from the ground up for reliability and clarity. With Elm, you
trade flexibility for focus. There’s exactly one architecture (The Elm Architecture, or TEA), exactly
one way to represent side effects, and a type system that works relentlessly to prevent runtime
errors. The result is a developer experience that feels—at least at first—strangely quiet. You don’t
spend hours debugging why your component didn’t re-render or why state mutated unexpectedly.
Instead, you spend time modeling your problem domain.

For React developers, the first encounter with Elm can feel almost too simple. There are no hooks to
juggle, no contexts to configure, no class vs. function components. Just a Model, an Update function,
and a View. And yet, that simplicity scales to codebases with hundreds of thousands of lines.

So why consider Elm if you already know React?

• To catch more errors at compile time. Many React/TypeScript errors show up only in the
browser. Elm’s compiler is famously strict: if it compiles, it’s very likely to work.

• To simplify mental overhead. Fewer concepts mean fewer ways to get things wrong. Instead
of choosing between a dozen state management solutions, Elm gives you one—TEA.

• Because it’s actually fun. Many developers describe Elm as enjoyable to work with. The
compiler points you toward fixes, the language encourages clear modeling, and your app tends
to just work once it compiles.

But there’s a deeper reason to learn Elm, even if you never use it professionally: it’s the fastest
way to truly learn functional programming. Not watered-down FP, not FP-flavored JavaScript
patterns, but real, uncompromising functional programming—the kind that changes how you think
about code in any language. Haskell has too many language features and quirks, making it
notoriously hard to get started with something practical. Elm, by contrast, is remarkably small
and focused—the entire language fits in your head. And crucially, you’re working in a domain you

Introduction ii

already know: building web UIs. This combination of strict FP discipline and immediate practical
application makes Elm uniquely effective as a learning tool. If you’ve ever wanted to “level up”
as a developer by learning functional programming, Elm is your shortest path. Especially if you’re
already familiar with React.

This book is not about convincing you to abandon React. Instead, it’s a guided tour for React
developers: what Elm looks like, how it compares, and how you might start using Elm—even if
only as a single widget inside a React app. By the end, you should have a feel for whether Elm can
play a role in your work.

If React has been your main frontend toolkit, think of Elm as a chance to see what frontend
development feels like with different trade-offs. It may not be for every project—but once you’ve
experienced the calm of Elm’s compiler, you may find yourself wishing more of your codebases
worked this way.

And, quite frankly, learning Elm will be worthwhile whether you end up using it professionally or
not.

To give you a taste of what I mean, let me show you the kind of guarantees Elm provides. Throughout
this book, you’ll see what I call “Elm Hooks” in each chapter—compelling previews of what makes
Elm delightful for that particular topic. React has hooks for state management, but Elm has hooks
that keep you hooked on the language itself.

Let’s try one right away, showcasing two of Elm’s main selling points: The friendly compiler and
the strict type system (or, good cop / bad cop, if you prefer).

Introduction iii

Elm Hook

Given the following Elm code

1 type Animal = Cat | Dog | Penguin

2

3

4 animalToString : Animal -> String

5 animalToString animal =

6 case animal of

7 Dog ->

8 "dog"

9

10 Cat ->

11 "cat"

12

13 -- Ooops, forgot about that Penguin!

The compiler answers the following:

1 -- MISSING PATTERNS --------------- /Users/cekrem/code/animals/src/Main.elm

2 This `case` does not have branches for all possibilities:

3

4 306|> case animal of

5 307|> Dog ->

6 308|> "dog"

7 309|>

8 310|> Cat ->

9 311|> "cat"

10

11 Missing possibilities include:

12

13 Penguin

14

15 I would have to crash if I saw one of those. Add branches for them!

16

17 Hint: If you want to write the code for each branch later, use `Debug.todo` as a

18 placeholder. Read <https://elm-lang.org/0.19.1/missing-patterns> for more

19 guidance on this workflow.

Sure beats all those ensureNever helpers you’ve written in TypeScript, huh?

About the Author
Christian Ekrem is a Staff Engineer with over 12 years of experience building production systems
at scale. He works daily in a production Elm codebase with over 125,000 lines of code at Lovdata,
Norway’s leading legal information provider. This real-world experience—not just toy projects—
informs every comparison and recommendation in this book.

His journey spans multiple platforms and languages: six years at Vipps MobilePay (Norway’s
leading mobile payment platform) working across backend development in Go and React, Android
development in Kotlin, and eventually becoming the first engineer to work across both simulta-
neously. This diversity gives him a unique perspective on what makes code maintainable and
genuinely better.

Christian’s background extends beyond tech—he’s taught at a special-needs high school and worked
as a film director. This varied experience taught him how to explain complex concepts clearly and
meet people where they are, which is exactly what this book aims to do for React developers learning
Elm.

Why this book exists: Christian believes Elm is the fastest way for developers to truly learn
functional programming. Whether you adopt Elm professionally or not, learning it will make you a
better developer in any language. This book is his way of sharing that insight with React developers
ready to level up.

You can read more of his writing on technology and functional programming at cekrem.github.io1.

1https://cekrem.github.io

https://cekrem.github.io
https://cekrem.github.io

Part I: From React to Elm:
Getting Started

Chapter 1: Elm: Delightful Constraints
Remember that Penguin example from the introduction? That kind of exhaustive checking isn’t just
for pattern matching; it’s actually how Elm approaches everything. Let me show you what this
means for everyday development.

You refactor a type. You rename a field from status to orderStatus. You update the code, run your
tests, and ship it. A week later, production errors start rolling in: Cannot read property 'status'

of undefined.

You missed one usage. It was buried in an error handler that only runs when a specific edge case
triggers. TypeScript didn’t catch it because that file had an any type. Your tests didn’t catch it
because you hadn’t written a test for that exact scenario. ESLint was silent because the code was
syntactically fine.

This isn’t a story about carelessness. You’re a good developer. You ran the tests. You checked your
work. But in a codebase of any size, it’s impossible to keep every usage of every field in your head.
You rely on tools to catch what you forget.

And sometimes, your tools don’t catch everything.

React Recommends, Elm Requires and Enables

Here’s something I’ve noticed working with both React and Elm: they’re heading in the same
direction, but taking different paths to get there.

Look at how React has evolved:

• Hooks moved us toward functional components and immutable state
• Redux brought predictable state management to the mainstream
• TypeScript went from optional to essential for serious projects
• Server Components push side effects to the server

Each change pushes React toward functional programming principles. Immutability, pure functions,
explicit state management—these are all things the React community now considers best practices.

A senior React developer I know put it this way: “Good React code in 2025 looks suspiciously like
Elm code from 2015.”

But here’s the key difference: React recommends functional programming. Elm requires it. And
in doing so, it frees you from worrying about entire classes of bugs and moreover enables you to
focus on solving actual problems instead of debugging state mutations.

Chapter 1: Elm: Delightful Constraints 3

In React, you can still mutate variables. You can mix paradigms. You can create runtime errors. The
language allows it. The community discourages it, but JavaScript doesn’t stop you.

In Elm, it’s simply impossible. Not hard. Not discouraged. Impossible. The language won’t compile
if you try to mutate data.

This isn’t about React being bad—React’s flexibility is a feature. But that flexibility comes with a
cost: you have to maintain the discipline yourself.

When Constraints Give Freedom

It sounds paradoxical: how can stricter constraints give you more freedom? But consider a common
debugging scenario in JavaScript:

1 const user = { name: "Ada", age: 29 };

2 someFunction(user);

3 console.log(user.name); // What's the name now?

You can’t knowwithout reading someFunction. Maybe it mutates the user. Maybe it doesn’t. Maybe
it mutates it conditionally? You have to trace through the code to be sure. Even the most elaborate
typings can’t give complete compile-time guarantees that an object will not be mutated; it’s simply
not possible. There are ways to prevent this in runtime with recursive variations of Object.freeze
and the like (but be mindful that, ironically, even the Object.freezemethod can be mutated!). And
again, imposing such restrictions in TypeScript require discipline.

This isn’t just a theoretical problem. I’ve spent hours debugging issues where data was mutated in
unexpected places. A function I thought was safe was actually changing my state. The bug only
appeared in specific conditions, which is why the tests didn’t catch it.

Now look at the Elm equivalent:

1 user = { name = "Ada", age = 29 }

2

3 -- This doesn't compile, whether done inline like here or in a function you pass it \

4 to:

5 user.name = "Grace" -- ERROR: Elm doesn't have variable mutation

6

7 -- The right way:

8 updatedUser = { user | name = "Grace" } -- Creates a new record

The compiler makes mutation impossible. When you pass user to a function, you know it comes
back unchanged. Not because you trust the function author. Not because code review caught it.
But because the language doesn’t allow anything else. If you’ve ever used Rust, you know that

Chapter 1: Elm: Delightful Constraints 4

the distinction between a variable and a mutable variable is an important one. In Elm, they’re all
immutable.

This constraint eliminates entire categories of bugs. You stop wondering “who changed this value?”
because nothing can. The constraint gives you freedom from a whole class of debugging sessions.

The Debugging Clarity

This immutability guarantee changes how you reason about code. In React, when state is wrong,
you have to trace backward: Where was this set? What changed it? Did something mutate it
accidentally?

In Elm, when state is wrong, you look at your update function. That’s it. That’s the only place state
changes. If the state is wrong, the logic in update is wrong. No hidden mutations. No stale closures.
No wondering if some other component changed something.

At our production app (a 120k+ lines Elm codebase), we’ve had entire months with zero runtime
exceptions in our Elm code. Not because we’re better developers than when we wrote TypeScript.
But because the compiler catches those errors before the code runs.

Elm Hook

You know that moment when you refactor a type but forget to update one place that uses it?
In Elm, you literally cannot compile until you fix every single usage. The compiler won’t let
you ship the incomplete refactor. It’s impossible to “forget one spot.”

Refactoring with Confidence

This reliability becomes especially valuable when making large-scale changes.

Let’s say you need to add a new state to your application—maybe a Paused state for a game, or a
Refreshing state for data loading. In React, you’d:

1. Add 'paused' to your TypeScript union type
2. Search the codebase for places that check the state
3. Update each one, hoping you found them all
4. Test manually, hoping you caught the edge cases
5. Ship and monitor for bugs

In Elm, you:

1. Add Paused to your union type

Chapter 1: Elm: Delightful Constraints 5

2. Try to compile
3. The compiler lists every place that needs updating
4. Fix each one
5. When it compiles, you’re done

I refactored a complex state machine recently—47 places needed updates. The compiler found all 47.
I fixed them one by one. When the code compiled, I deployed it. No bugs. No forgotten edge cases.
The compiler had verified completeness.

That’s not a guarantee of correctness—I can still have logic bugs. But it’s a guarantee that every
code path handles every state. No gaps.

The Architectural Discipline

If you’ve read about Clean Architecture or SOLID principles, you know they’re good ideas. Single
Responsibility, Dependency Inversion, separation of concerns—these patterns lead to maintainable
code.

But they’re also discipline. You have to remember to follow them. Code review has to catch
violations. It’s easy to cut corners when you’re rushing.

The Elm Architecture enforces these patterns by default. Again: not as guidelines—as requirements:

• Single Responsibility: The compiler forces you to separate View, Update, and Model
• Pure Functions: Mutation is impossible, so all your functions are automatically pure
• Explicit Effects: Side effects must go through Commands; you can’t just call an API in your
update logic

• Exhaustive Handling: Pattern matching forces you to handle every case

Where other languages offer SOLID as “best practices” you should follow if you’re disciplined,
they’re a mandatory part of Elm. The compiler is your relentless architecture mentor.

What This Costs You

Let’s be direct: Elm’s strictness has real costs.

The ecosystem is smaller. React has thousands of libraries. Elm has hundreds. You’ll find yourself
writing more from scratch.

The learning curve is steeper. Functional programming is different if you’re coming from
JavaScript. Pattern matching, union types, immutability—these take time to internalize.

Your team needs to learn. Hiring is harder. Onboarding takes longer. Not every developer wants
to learn a niche language.

Chapter 1: Elm: Delightful Constraints 6

You lose flexibility. Sometimes you just want to mutate a value and move on. Elm won’t let you.
You have to do it the “right” way, even when the shortcut would probably work.

For some projects, these costs aren’t worth it. If you’re prototyping, exploring, or building something
simple, React’s flexibility is valuable. You want to move fast, not satisfy a strict compiler. Doubly
so if React has become second nature: when going fast, using familiar tools is a win in and by itself!
And honestly, for most projects today, React is still the pragmatic choice—and that’s perfectly fine.

But for other projects—production applications where bugs are expensive, complex state machines,
financial tools, healthcare systems—Elm’s guarantees are worth the upfront cost.

And, to be completely honest: At this point I personally prefer Elm even for the occasional whimsical
side-project that won’t hurt a fly no matter how hard it crashes. As you’ll hopefully discover for
yourself before too long: Elm is kind of addictive!

What Elm Teaches You

Here’s what I’ve realized: Elm’s value isn’t just in using it. It’s in what it teaches you.

Learning Elm changes how you think about code. Mutable state starts looking suspicious. You
design types that actually prevent bugs instead of just documenting intent. You write better React
because these patterns become second nature.

The React community is moving toward Elm’s ideas—hooks, immutability, type safety, isolated
effects. These aren’t Elm-specific. They’re functional programming principles that apply every-
where. And Elm is uniquely effective at teaching them because you’re building real UIs, not studying
academic theory.

This is Elm’s hidden superpower: it’s the fastest way to truly learn functional programming.
Not because it teaches you monads and functors (Elm never even mentions them), but because it
makes functional programming impossible to avoid. Try to mutate a variable? Compiler says no.
Try to ignore a case? Compiler says no. Try to hide side effects? Nope. You can’t cheat your way
around it, so you learn to think functionally.

Compare this to learning FP through Haskell or OCaml. Those languages are powerful, but they’re
also large and complex. Haskell has lazy evaluation, type classes, monad transformers, dozens of
language extensions. By the time you understand enough to build something useful, months have
passed.

Elm’s entire language fits in your head in aweekend. No classes. No inheritance. No async/await, no
promises, no null, no undefined. Just functions, types, and one architecture pattern. The smallness
isn’t a limitation—it’s what makes learning fast.

And crucially, you’re building in a domain you already know. If you’re coming from React, you
understand components, events, state updates. Elm uses different mechanics, but the same concepts.
You’re not learning abstract category theory—you’re building the same UIs you built yesterday, just
with different guarantees.

Chapter 1: Elm: Delightful Constraints 7

As I’ll argue again and again throughout this book: This matters even if you never use Elm
professionally. The functional thinking you develop transfers directly to any language. Modeling
with types, making illegal states unrepresentable, treating data immutably—these patterns make you
write better TypeScript, better Python, better anything. And if you eventually need to learn Haskell,
F#, or OCaml, you’ll have a solid head start since you already understand the core concepts.

In the next chapter, we’ll stop talking philosophy and look at code. We’ll build the same application
in both React and Elm, side by side. You’ll see exactly what these guarantees look like in practice—
the syntax, the patterns, the developer experience.

Are you ready?

	Table of Contents
	Introduction
	About the Author
	Part I: From React to Elm: Getting Started
	Chapter 1: Elm: Delightful Constraints
	React Recommends, Elm Requires and Enables
	When Constraints Give Freedom
	The Debugging Clarity
	Refactoring with Confidence
	The Architectural Discipline
	What This Costs You
	What Elm Teaches You

	Chapter 2: The Elm Architecture vs React Patterns
	A Tale of Two Hangman Games
	The React Version: Hooks and Effects
	The Elm Version: Model, Msg, Update, View
	Breaking Down The Elm Architecture
	What Did We Gain?
	No useEffect Needed
	Union Types vs String Literals
	The Price of Simplicity
	What This Means for Real Applications
	The Three Functions That Replace All Hooks
	What's Next
	The FP Concepts You Just Learned
	Try It Yourself

	Chapter 3: Your First Elm App
	Installing Elm
	Editor Setup
	Setting Up Your Project
	The obligatory ``Hello, world!''
	Two Flavors of main
	The LGTM Generator: Building It Step by Step
	Building Your First Elm App
	Compiler-Driven Development in Action
	What You Just Built

	Chapter 4: Starting Small: Elm in Your React Codebase
	Widget-by-widget Incremental Adoption Strategy
	Integrating One Elm Component into React
	Build Systems and Toolchain Integration
	Building Confidence to Go Bigger

	Chapter 5: State Management: From Hooks to The Elm Architecture
	useState, useReducer, and Context → Model and Update
	Handling Complex State Transitions
	Why Immutability Isn't Just a Nice-to-Have

	Chapter 6: Side Effects: From useEffect to Commands
	The useEffect Dependency Array Problem
	How Elm Sequences Effects with Cmd
	Testing Side Effects Without Mocking Everything

	Chapter 7: Type Safety: Beyond TypeScript
	What Compile-Time Guarantees Actually Guarantee
	Union Types for Modeling Impossible States
	Making Runtime Errors Nearly Impossible

	Chapter 8: Event Handling and User Interaction
	onClick, onChange, and Synthetic Events → Elm Messages
	Form Validation Patterns That Actually Work
	Debouncing and Complex Interaction Patterns

	Chapter 9: Component Architecture in Elm
	Moving Beyond the Single-File Approach
	Module Boundaries and Message Routing
	Composing Complex UIs Without Prop Drilling

	Chapter 10: HTTP and External Data
	fetch() and axios → Http.request
	Handling Loading States and Errors Elegantly
	JSON Decoding That Fails at Compile Time, Not Runtime

	Chapter 11: JavaScript Interop: Ports and Flags
	When You Need to Escape Elm's Boundaries
	Integrating with Existing JavaScript Libraries
	Communicating with the Outside World Safely

	Chapter 12: Routing and Navigation
	React Router → elm/browser Navigation
	URL Parsing and Generation
	SPAs That Work with the Back Button

	Chapter 13: Testing Strategies
	Jest and React Testing Library → elm-test
	Testing Pure Functions vs Testing Components
	Fuzz Testing for Catching Edge Cases

	Chapter 14: The Elm Ecosystem for React Developers
	Package Management Without Semver Hell
	Popular Packages and Community Patterns
	When the Ecosystem Doesn't Have What You Need

	Chapter 15: Rendering Optimization
	React.memo, useCallback, and Reconciliation Pain Points
	How Elm's Virtual DOM Makes Optimization Automatic
	Performance by Default vs Performance by Configuration

	Chapter 16: Performance and Bundle Size
	Bundle Sizes and Compilation Targets
	Lazy Loading and Code Splitting
	When and How to Optimize Elm Applications

	Chapter 17: Case Study: Rebuilding a React Component in Elm
	Step-by-Step Conversion of a Real-World Form Component
	Measuring Development Time and Bug Rates
	What the Refactor Revealed About Both Approaches

	Chapter 18: Elm at Scale
	Large Codebases: NoRedInk, Lamdera, Lovdata, and Others
	Folder Structure and Code Organization
	Long-Term Maintenance and Team Collaboration

	Chapter 19: When to Choose Elm (And When Not To)
	Project Types Where Elm Shines
	Team Dynamics and Learning Curves
	Making the Business Case for Functional Frontend Development
	The Value Even If You Don't Use Elm Professionally

	Appendix A: Quick Reference Guide
	React → Elm Concept Mapping
	Common Patterns Cheat Sheet
	Troubleshooting Guide for React Developers

	Appendix C: Further Reading and Resources
	Essential Elm Learning Resources
	Richard Feldman's SPA Example (The Gold Standard Elm Codebase)
	Community and Getting Help
	Advanced Topics Beyond This Book

